STAGE – A Software Tool for Automatic Grading of Testing Exercises Case Study Paper

Sebastian Pape\*, Julian Flake<sup>+</sup>, Andreas Beckmann<sup>+</sup>, Jan Jürjens<sup>+</sup>

\*Goethe University Frankfurt +TU Dortmund

May, 20th, 2016 ICSE – SEET '16, Austin, Texas USA

| Introduction<br>00000 | System Architecture | Evaluation<br>000000 | Conclusion and Future Work |
|-----------------------|---------------------|----------------------|----------------------------|
| Outline               |                     |                      |                            |

#### 1 Introduction

- Background
- Sample Exercise
- Related Work

## 2 System Architecture

- Requirements
- System

### 3 Evaluation

- Questionnaires
- Performance

### 4 Conclusion and Future Work



| Introduction<br>●0000 | System Architecture | Evaluation<br>000000 | Conclusion and Future Work |
|-----------------------|---------------------|----------------------|----------------------------|
| Motivation            |                     |                      |                            |

- Course on Software Engineering
  - Model-based development
  - Quality management (testing)
- 15 weeks with 90-minute-lectures and 45-minute-tutorials
- 200 computer science undergraduates

Motivation for automatic tool:

- Correcting homework is a time-consuming and error-prone task
- Automatic assessment has same the level of detail for all students
- Students may repeat the exercises as often as they like



| Introduction<br>0●000 | System Architecture | Evaluation<br>000000 | Conclusion and Future Work |
|-----------------------|---------------------|----------------------|----------------------------|
| Participation         |                     |                      |                            |

 1st use: Winter Semester 2013/14 (1 / 6 online)
 2nd use: Winter Semester 2014/15 (2 / 6 online)

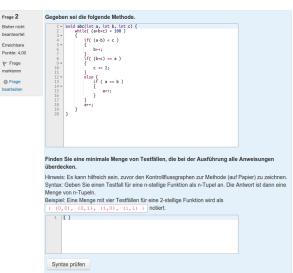
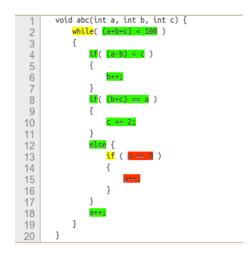



Table: Number of students participating in exercises

| Exercise          | 1   | 2   | 3   | 4   | 5   | 6  |
|-------------------|-----|-----|-----|-----|-----|----|
| Regular, WS 13/14 | 127 | 122 | 101 | 99  | 118 | 52 |
| Regular, WS 14/15 | 121 | 147 | 144 | 146 | 148 | 81 |
| Addit., WS 14/15  | 64  | 83  | 113 | 108 | -   | -  |

| Introduction<br>००●०० | System Architecture | Evaluation<br>000000 | Conclusion and Future Work |
|-----------------------|---------------------|----------------------|----------------------------|
| Sample Ex             | ercise: Task        |                      |                            |


Give a minimal set of test cases that reaches a full statement coverage.



Pape, Flake, Beckmann, Jürjens

| Introduction<br>○○○●○ | System Architecture | Evaluation<br>000000 | Conclusion and Future Work |
|-----------------------|---------------------|----------------------|----------------------------|
| Sample E              | xercise: Solution   |                      |                            |

### Example answer: $\{(1, 2, 0), (2, 1, 1)\}$

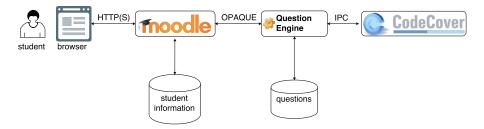


| Introduction<br>0000● | System Architecture | Evaluation<br>000000 | Conclusion and Future Work |
|-----------------------|---------------------|----------------------|----------------------------|
| Related Wor           | k                   |                      |                            |

Lots of work on automatic assessment of programming

- dating back to 1960s, e.g.
   [Hollingsworth, 1960]
   [Forsythe and Wirth, 1965]
- aim to develop the programming skills
- Most tools focus on assessing the quality of submitted code
- Task for testing is different
- Payed online courses available




| Introduction | System Architecture | Evaluation | <b>Conclusion and Future Work</b> |
|--------------|---------------------|------------|-----------------------------------|
| 00000        | ●○○                 | 000000     | 00                                |
| Requireme    | nts                 |            |                                   |

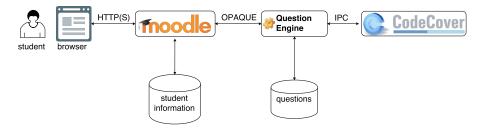
Requirements besides automatic correction:

- **1** The tool should improve students' experience
  - by allowing more creative questions
  - by giving detailed feedback on their solution
- 2 The tool should allow additional exercises for the students
- 3 A relationship between accounts in the system and the students' matriculation number is needed
- 4 The source code base which needs to be maintained should be as small as possible
- **5** The solution should be easily scalable to 400 students








Most principal decision:

- University's computing center already runs Moodle [Lopes, 2011]
  - 2 Exercise management
  - 3 Identity management
- Drawback: Only limited modules allowed to install
  - **1** Open Protocol for Accessing Question Engines (SOAP-based)
- Question Engine based on Activiti BPMN2.0 Process Engine

Pape, Flake, Beckmann, Jürjens

9 / 18





System building:

- CodeCover measures several code coverage metrics in the context of white-box testing.
  - 1 provides valuable feedback
  - 4 Open source under EPL
  - 4 Was under active development and maintainance

Performance ... later.

Pape, Flake, Beckmann, Jürjens

| Introduction<br>00000 | System Architecture | Evaluation<br>•00000 | Conclusion and Future Work |
|-----------------------|---------------------|----------------------|----------------------------|
| Evaluation            | Questions           |                      |                            |

- How were the exercises perceived by the students?
- Were there any technical obstacles while working on the exercises?



...

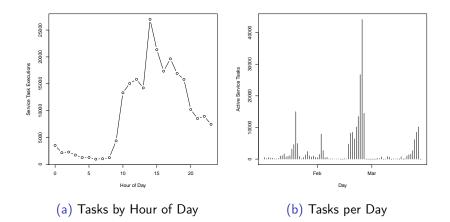
| Introduction<br>00000        | System Architecture                         | Evaluation<br>0●0000                     | Conclusion and Future Work |
|------------------------------|---------------------------------------------|------------------------------------------|----------------------------|
| Questionnai                  | re                                          |                                          |                            |
| Two versions                 | :                                           | Method:                                  |                            |
| <ul> <li>After ex</li> </ul> | ercises                                     | Voluntai                                 | ry                         |
| After fee                    | edback                                      | Anonym                                   | ous                        |
| Four parts:                  |                                             | ightarrow Multiple                       | submissions possible       |
| Demogra                      | aphics                                      | ightarrow No map                         | ping between               |
| -                            | vpe scale questions<br>tion and time spent) | exercises<br>question                    | s and feedback<br>maires   |
| ■ Free tex                   | . ,                                         | Result:                                  |                            |
| (improve<br>shortcor         | ements and<br>nings)                        | <ul> <li>105 com<br/>question</li> </ul> | •                          |
| Overall                      | grade                                       |                                          |                            |

44 1 2 3 4 69 1 2 3

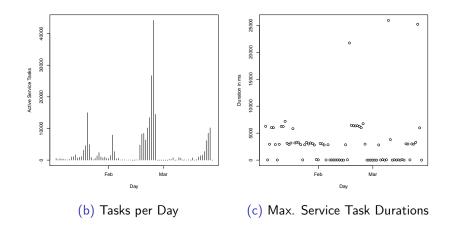
a (D) (D) (D) (D) 10 (1) (2) (3) (4) (65 (3 11 (1) (2) (3) (4) 66

| Introduction<br>00000 | System Architecture | Evaluation<br>00000 | Conclusion and Future Work |
|-----------------------|---------------------|---------------------|----------------------------|
| Qualitative           | e Analysis          |                     |                            |

- + Advantages of digital submission (18)
- + Precise feedback (5)
- + Intuitive usability (5)
  - Editing of submitted answers (7)
  - Similarity of Assignments (6)
  - Bad Performance (5)
  - Indifferent Grading (5)
  - Dowloading the exercises (4)




| Introduction<br>00000 | System Architecture | Evaluation<br>000●00 | Conclusion and Future Work |
|-----------------------|---------------------|----------------------|----------------------------|
| Threats to            | Validity            |                      |                            |


- Multiple submissions possible
- Qualitative reviews may be biased by analyzers
- One student gave positive feedback, but bad marks
- Many students did not take part in the last exercise
- Only voluntary feedback
- Qualitative analysis will be skewed towards more negative comments



| Introduction<br>00000 | System Architecture | Evaluation<br>○○○○●○ | Conclusion and Future Work |  |  |  |
|-----------------------|---------------------|----------------------|----------------------------|--|--|--|
| Performance.          | Load Distribution   | )                    |                            |  |  |  |

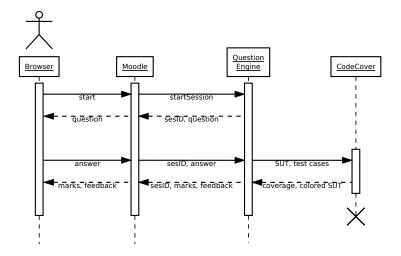




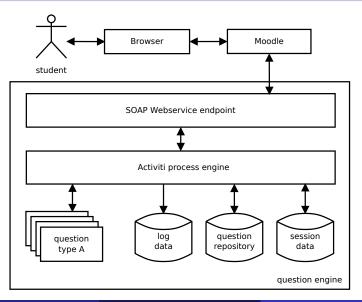


| Introduction | System Architecture | Evaluation | Conclusion and Future Work |
|--------------|---------------------|------------|----------------------------|
| 00000        |                     | 000000     | ●○                         |
| Conclusion   |                     |            |                            |




- Most students had a positive or neutral view
- Automation of assessment allows to free up teaching resources
- No serious technical or usability issues
- Feedback seemed helpful for most students, but could be more detailed
- System's performance sufficient

| Introduction | System Architecture | Evaluation | Conclusion and Future Work |
|--------------|---------------------|------------|----------------------------|
| 00000        |                     | 000000     | ○●                         |
| Future Wor   | k                   |            |                            |




- Performance improvements
- Facilitating the editing of answers
- Additional exercises: (e.g. UML modeling, OCL)
- Individual instances for each student
- Use as audience response system during lectures

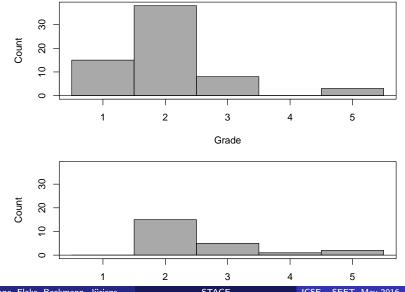
# Messages between browser, Moodle, Question Engine and CodeCover



# Components of the Question Engine



# **Evaluation Questions**


- Were the online exercises more or less demanding than the traditional exercises?
- How were the exercises perceived by the students?
- Would the students prefer more or less online exercises for future lectures?
- Were there any technical obstacles while working on the exercises?
- Were the additional voluntary exercises a helpful addition regarding the preparation for the final exam?



# Questions with Likert-type scale

| Question                                                                           |       | ++   | +      | 0        | -    |         |
|------------------------------------------------------------------------------------|-------|------|--------|----------|------|---------|
| Online exercises required more effort than paper exercises.                        |       | 6    | 3      | 18       | 23   | 15      |
| The motivation to work with online exercises was higher than with paper exercises. |       | 11   | 19     | 14       | 7    | 12      |
| When working on the exercises, technical prob-<br>lems occurred.                   |       | 3    | 2      | 4        | 5    | 53      |
| The usability of the online system was good.                                       |       | 43   | 25     | 4        | 1    | 3       |
| The feedback was helpful for understanding the exercise.                           |       | 11   | 8      | 9        | 4    | 2       |
| Feedback for online exercises was more detailed than for paper exercises.          |       | 3    | 3      | 6        | 5    | 6       |
| Overall, I preferred the online exercises.                                         |       | 37   | 27     | 17       | 8    | 10      |
| Pape, Flake, Beckmann, Jürjens                                                     | STAGE | ICSE | - SEET | Г, Мау 2 | 2016 | 22 / 18 |

# Grades after Exercises / Feedback



Pape, Flake, Beckmann, Jürjens

STAGE

23 / 18 ICSE – SEET, May 2016

The topics regarding positive effects of the system towards the students are more prominent (55%) than critical topics, which can be interpreted as a positive opinion of the students towards the system.

Table: Result of categorization of Feedback

| Content\Technical | Pos. | Neutr. | Neg. | No Feedback |
|-------------------|------|--------|------|-------------|
| Positive          | 4    | 1      | 0    | 1           |
| Neutral           | 3    | 5      | 0    | 1           |
| Negative          | 6    | 6      | 2    | 5           |
| No Feedback       | 6    | 9      | 7    | 48          |

#### Forsythe, G. E. and Wirth, N. (1965).

Automatic grading programs. *Commun. ACM*, 8(5):275–278.

Hollingsworth, J. (1960). Automatic graders for programming classes. *Commun. ACM*, 3(10):528–529.

Lopes, A. P. F. F. (2011).

Teaching with Moodle in higher education.

Technical report, Institute of Accounting and Administration (ISCAP), Polytechnic Institute of Oporto (IPP).